Step of Proof: outr_wf |
12,41 |
|
Inference at * 1 2
Iof proof for Lemma outr wf:
1. Type
2. B : Type
3. y : B
4. True
outr(inr y )
B
by ((Reduce 0)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 4:n
C)) (first_tok :t) inil_term)))
C.